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Abstract. This paper deals with the regularity of the global attractor for the
Benjamin—-Bona—Mahony equation. We prove that the global attractor is smooth if the forc-
ing term is smooth.

1. Introduction

In this paper, we investigate the asymptotic behaviour of solutions to the
Benjamin—Bona—Mahony equation given by

Uy — Ugyy — Vlgy + Uy +uiy, = g(x) in Q2 x RY (1.2)

wherev > 0, g(x) € L%(Q),  C R is a bounded interval.

The Benjamin—Bona—Mahony equation incorporates nonlinear dispersive and dissipative
effects, and has been proposed as a model for propagation of long waves. The existence
and unigueness of solutions for this equation have been investigated by many authors, such
as Bona and Dougalis [1], Bona and Smith [2], Showalter [3] and Anaickl [4]. In
the casev = 0, this equation has been studied by Benjamiiral [5], Bona and Bryant
[6], Medeiros and Miranda [7], Medeiros and Menzala [8], Albert [9], Biler [10], and the
references therein. The finite-dimensional behaviour of the solutions has been discussed by
Wang and Yang [11], and Wang [12, 13]. In [11] and [12], the authors establish the existence
of the global attractor for this model iIH1(Q2) and H?(R2), respectively, which has finite
fractal dimension. In [13], the author proves the existence of the weak global attréctor
in H/(Q) for every integerj > 2. Then a natural question arises whether these attractors
coincide. This question is concerned with the regularity of attractors. The study of regularity
of the global attractor is classical in the theory of dissipative dynamical systems, see [14]
for the general framework which applies to the strongly dissipative case. For the weakly
dissipative case such as the Benjamin—-Bona—Mahony equation, the regularity of attractors
is not obvious since, in this case, the equation has no regularization effect on the solutions.
Recently, Goubet [15] apply a splitting method and successfully show the regularity of
attractors for the weakly damped Sotinger equation. Splitting techniques are also used
to prove the regularity of attractors for weakly dissipative evolution equations by Moise and
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Rosa [16] and Goubet and Moise [17]. We here first construct a similar decomposition for
the Benjamin—Bona—Mahony equation, and then show.thatl < j < k + 2) obtained in

[13] is a subset of7*+2(Q) if the forcing termg € H*(Q) with k > 0. This result implies
that Ay = Ay, = -+ = Ago.

The study of the asymptotic behaviour of solutions for nonlinear evolution equations is
an interesting question both in mathematics and physics. For some dissipative equations,
the long time behaviour of solutions is described by the existence of the global attractor
which is a compact invariant set and attracts all solutions. The global attractor is closely
related to the turbulence and chaos in physics. The complicated structure of the global
attractor is one important cause of the perceived chaos (see [14]). So, to better understand
the turbulence and chaos, it is necessary to investigate the existence and properties of
attractors. In this paper, for the Benjamin—-Bona—Mahony equation, the regularity of the
global attractor is obtained. As a result of regularity, we will see that if the forcing term is
smooth, then the global attractor is also smooth, which means the global attractor consists
of smooth functions. In addition, this regularity also implies that the global attractor attracts
all solutions in a stronger sense if the initial data are more regular. In practical problems,
when we approach the orbits in the global attractor, the regularity will provide a higher
order of approximation (see section 3 later).

The outline of this paper is as follows. In the next section, we present some known
results for the Benjamin—-Bona—Mahony equation which will be used in the following.
Section 3 is devoted to our main result. We first introduce a splitting of the solution
u = S(t)up of equation (1.1) into two partS;(¢t)uo and S»(¢)ug. Next, we derivea priori
estimates and show th&t(¢)ug is more regular tha¥(r)ug. Then, we prove thas,(t)ug
converges to zero whengoes to infinity. Finally, we present the proof of the main result.

2. Preliminaries

In this section, we describe the equation and recall some known results concerning the
existence and uniqueness of solutions. We also state the existence of weak attractors and
bounded absorbing sets for the equation.

We consider the following Benjamin—Bona—Mahony equation:

Uy — Upyr — VU + Uy + utt, = g(x) (x,1) e 2 x Rt (2.1)
with the initial condition

u(x, 0) = ug(x) x e (2.2)
and the periodic boundary condition

Q=(,L) and u is Q-periodic (2.3)

wherev is a positive constant anglx) is a given function.
In the following, we shall denotél = Lge,(Q), endowed with its usual inner product

(-, -) and normy|-||, while | - || , denotes the norm dfje(2) for all 1 < p < co(||-ll2 = - -

In general,|| - |x denotes the norm of any Banach space

Throughout this paper, we assurges H;’fer(Q) with k£ > 0. Then it follows from [13]
that, for every integej with 1 < j < k+ 2, if ug € ngr(Q), the problem (2.1)—(2.3)
possesses a unigue solutie(r) defined onR* such that
ou

u(1) € C([0, 00), Hye(2)) ”

€ L0, T; Hje((Q)) vT > 0.
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This result establishes the existence of a dynamical syg$éir)},~o which mapsHF{e,(Q)

to Hie(2) such thatSY (Hug = u(r), the solution of problem (2.1)-(2.3). Clearly,
S('i>(’)|H,,fe+,1 = SUD () for eachj = 1,2,...,k + 1. The weak continuity ofs‘/(r)
with respect to initial data is established in [11] and [12] foK1j < k + 2. That is, we
have the following proposition.

Proposition 2.1. Assume thag < HF’;er(Q) with £ > 0. Then foreacly = 1,2, ..., k+2,
andr > 0, SY) (1) : Hjed ) — Hied2) is weakly continuous.

In this paper, we also suppose the forcgi¢pas zero mean, that is,

/Qg(x) dx =0. (2.4)

Then integrating (2.1) ovef2 and applying (2.3) we find that the average uaf) is
conserved, i.e. for all > 0

1 1
O () = ﬁ/Qu(x,t)dx = @/S;uo(x)dx = 0(ug). (2.5)

This shows that problem (2.1)—(2.3) has not bounded absorbing sets in wholefspabés
difficulty is overcome by introducing

H,={ueH: |0 <a}.
(2.5) implies thatH, is invariant under the semigrouf’(r) associated to the system

(2.1)-(2.3).
We now recall the following existence result of bounded absorbing sets.

Theorem 2.1 Assume that (2.4) holdg; € HF’)‘ () for a fixedk > 0, ug € H,fer(Q) M Hy,

e

Jj=212,...,k+2. Then there exists a constafit depending on the data,($2, g) and j
such that

luOllg < Ej Vi 2 g
wheret; depends on the data, (2, g) and j and R when [lug|lg; < R.

For the proof of this theorem, we refer the reader to [13].
We note that theorem 2.1 shows that the ball

Bj = {u € Hje(Q) : ullps < Ej} (2.6)
is an absorbing set fa$\(¢) in H;{er(Q) (N H,. Let

A=Usns,  1<j<k+2 (2.7)

s=>0t>s

where the closure is taken with respect to fiie-weak topology. Then from [13] we know
that.4; is the weak global attractor fa8/)(r). More precisely, we have the following.

Theorem 2.2. Assume that (2.4) holdsg € ngr(sz) for a fixed k > 0, then for
J=2L12, ..., k+2, the set4; satisfies:

(i) A, is bounded and weakly closed () N H,;

(i) SY1)A; = A;, Vi = 0;

(iii) for every bounded seB in Hge:N H,, SY) (1) B converges to4; with respect to the
H/-weak topology as — oo.
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We remark that the weak global attractots and.A; are also the strong global attractors
in leer(Q) and ngr(sz), respectively, which is shown in [11] and [12]. Here the strong
global attractor means that the conclusion (iii) in theorem 2.2 holds with respect to the
strong topology.

By theorem 2.2, it is easy to see thdi D Ay D --- D Ai42. In this paper, we shall
show alsoAd; C A, C --- C Aiyo. So we will find thatd; = A, = --- = A;4». For that
purpose, we must establish the regularityAf for j = 1,2,...,k + 1, see theorem 3.2
below.

In the following, we will frequently use the Agmon inequality: fore H(Q),

1/2
lullos < Cllull™2l|ull}) < Cllull g (2.8)

Hereafter, we shall denote Iy any positive constants which may change from line to line.

3. Regularity of the global attractor

In this section, we shall use a decomposition technique to derive the regularity of the weak
global attractorA; for S“(r), and show that all the attractoy4; coincide. By an idea of

Ball [18], we shall also prove that the weak global attracigris actually the strong global
attractor forSY(¢) in H,{er(sz).

In what follows, we denote bys = —a,,, the unbounded self-adjoint operator with
domainH,fer(Q). Then the operatoA'/? is well defined. By spectral theory, we know that
there exists a complete orthonormal bagis }>°, of H consisting of eigenvectors of,
that is,

Aw, = A, w, O=A1 <A< <Ay = 00.
Given N, we denote byP = Py the orthogonal projectors i/ onto the space spanned
by the firstN eigenvectors ofA, wy, wo, ..., wy, and we set) = Qy = I — Py. Since
IAY2u|| = Jlug|l, for u € Hye(S2), and

IAY2ull > 255l ue QuD(AY?)
we see that

lull < Ay 3lusll u € QuD(AY). (3.1)

Consider nowuo € Hp, (), u(t) = SP(t)ug, and setu(r) = p(t) + q(1), where
p(t) = Pyu(t), q(t) = Qyu(t). We split the high-frequency pagtasqg = y + z, wherey
is defined by

Y = Yext — Vxx + Yx + On(yye) + On(py)e = Ong(x) — On(ppy) (3.2)
y(0) =0. (3.3)
The following lemma shows that problem (3.2)—(3.3) is well-posed.

Lemma 3.1.Assumeg € H andug € leer(Q). Then there exists a unique solutignof
problem (3.2)(3.3) such thate C([0, 00), Oy Hpe((2)).

The proof of this lemma is similar to that in [7], and therefore is omitted here.

In the following, we derive estimates on and show thaty(z) is more regular than
u(t). For that purpose, we will use the bounded absorbingBsdtl < j < k + 2) given
by (2.6). Without loss of generality, we can assume #f&t()B; C B, for everyt > 0,
which means ifup € B; (1< j < k+ 2), then for every > 0,

lu(llp < Ej. (3.4
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By (3.4) and the Agmon inequality we see that, for eveey 0,

lu@®)lloo < C. (3.5)
Due to p(r) = Pyu(t), by (3.4) we have for every > 0,
Ilpllu < Ej Pl < C. (3.6)

We now derive the estimates onin leer(Q).
Lemma 3.2 Assume that (2.4) holdg € H, ug € B;. Then there exist&/y depending on
E4 such that forN > Ny,
ly@®llg < C t=>20
whereC depends on the data, (<2, g).

Proof. Taking the inner product of (3.2) with in H, we find that

1d
éa(llyll2 + 15:l?) + vilyell® = (Qg. ¥) — (Q(ppx + yyx + (p¥)2), ¥). (3.7)
By (3.1) we have

-1/2 —
1(08. 01 = 1(g. VI < Igllyll < A5 lgllyell < € + Azt Iy l? (3.8)

By (3.6) with j = 1, we get

|(=Q(ppx), M| = [(ppx. Y)| = '/Qppxng‘ < pllolipx NIyl < Cliyll

<SCHIyI2< CH+ ANyl (3.9)
while

~(QUY) V) =~y ) =3 fﬂ (%), dx = 0. (3.10)
By (3.6) again, we have

—(Q(PY)xe ¥) = (py. v) < 1Py el < CARYZ Iyl (3.11)

Without loss of generality, we always assuie,; > 1 in the following. So by (3.7)—(3.11)
we get

d _
G (12 1317 + 20l < € + CiayZlly.ll. (3.12)

ChoosingNo large enough such thatii, )3 < v. Then forN > No, we find that

d
E(Ilyll2 + [y l1®) + vllyell® < C. (3.13)
By (3.1), we note that

Iyell? = 2lyell® + Sanealvli? = 3A212 + el
and therefore, we find, for every> 0,

d 1
a(llyllz + v l® + Ev(nyn2 + Iy l1? < C.
It follows from the Gronwall lemma that, for every> O,
2C 2C
Iy + ly 12 < €2 (ly ()12 + [y O)[%) + —==

which concludes lemma 3.2. O
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By lemma 3.2 and the Agmon inequality, we get, forzalt 0,
Iyl < C. (3.14)

Lemma 3.3 Assume that (2.4) holdg, € H, up € B;. Then, forN > Ny, we have
Iyl < C 120

where Ny is the constant in lemma 3.2, depends on the data, (2, g).
Proof. Taking the inner product of (3.2) withy,, in H, we find

1d
ia(nyxnz + 1y ) + vyl = (8 — ppx — Y¥e — (PY)x, —Yux)- (3.15)

Note that

(8, =ye)| < lglyarll < €+ gvllyecll®. (3.16)
By (3.6) we have

1(PPxs el < IPlool Pallllyexll € Cllyexll < € + 2vllyssll®. (3.17)
By (3.14) and lemma 3.2, we get

1Y Yl < U loo 1y Hyaell € Cllyil < € + g0l yexll?. (3.18)
Similarly, we also have

[(PY)es o)l € C + gvllyel (3.19)

By (3.15)—(3.19), we get, for all > 0,

d 2 2 2
E(”yx” F Y1) + vllyecll® < C.
Since

Iyecll® = 21eall® + 3Anaallyell® = Syl + 1212
we find, for allr > 0,

d
a(ﬂyxn2 + 1y2e1®) + SvUyl? + lyacl® < €

and then the Gronwall lemma gives lemma 3.3. O

Lemma 3.4 Assume that (2.4) holdg, € HF’;e,(Q) for afixedk > 0,up € B; (1< j < k+1).
Then there exists a consta@t depending on the data,(€2, ¢g) and j such that when
N = Ny,

IyOllwa <C; 120
where Ny is the constant in lemma 3.2.

Proof. We check this lemma by an induction argumentjon

() Initialization of the induction(; = 1). If j = 1, lemma 3.4 reduces to lemma 3.3.
Therefore, in this case, the lemma is true.

(ii) The induction argument. We assume that lemma 3.4 holds up to grdet; we
want to show it is also valid at ordgr (j > 2).

Taking the inner product of (3.2) with-1)/39%' y in H, we see

d . , ) ) .
5 (1% YIZ+ 181D + vlldi Ty 12 = (=1 (g — ppx — yye — (PY)x, 8% y).  (3.20)

NI =
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By the induction assumption, we know

ly®llai < C; t>0. (3.21)
So by the Agmon inequality, we have, for eacki@ < j — 1,

185y () llee < C; t>0. (3.22)
Note that
(=D (g. 07 VI < llglm1118{ ™y Il < gl 19yl < € + vl 1% (3.23)

We also have

(=) (—pps, 0% y)| = ‘ / a,{%ppx)a){”ydx'
Q
< ‘ / Za,-(axp)“l...@{1p)“fla§*2ydx’
Q

+| [ patpaityar] < Saloopie o i [ g
¢ Q
FPlcld] PN < D eI 2p N - 1P 181
Flplalpllai 18]yl < ClIZ Il (by (3.6))
1 )
< C vl (3.24)

Similarly, using (3.21) and (3.22) instead of (3.6), we can deduce that the last two terms
on the right-hand side of (3.20) are also bounded’by %v||a){+1y||2, so by (3.20), (3.23),
(3.24) and the analogy, we find

%(Ha;yuz + 13yl + w9l yl2 < C.
Thanks to
197y 11% = F197 1 + FAnalldfy1? = 3(10] Y17 + 191 y11%)
we get, for allz > 0,
%(Ha,{yu2 + 18]yl + %v(lla;fyllz + 9y < €
and then the Gronwall lemma concludes lemma 3.4. O

Projecting equation (2.1) ont@ y H, we find thaty = Q yu satisfies

qr — Gt = Vqux +qx + ON(P + Q) (p +@)x = Ong (3.25)

q(0) = Qnuo. (3.26)
Then from (3.25) and (3.2), it follows that= g — y satisfies

% = Zoxe = VZax + 2 = —ON(2qx + Y2 + (P2)y) (3.27)

z(0) = Qnuo. (3.28)

In the following, we shall show converges to zero asgoes to infinity. More precisely,
we have the following.

Lemma 3.5.Assume that (2.4) holdg, € H, ug € B;. Then there exist&/y depending on
the data ¢, 2, ¢g) and E; such that, forN > N,

_ 1
lz()l%: < Ere72” t>0
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where E; is the constant in (2.6) with = 1.
Proof. Taking the inner product of (3.27) within H, we find

1d
EE(IIZII + 1zl + vlizel® = —(2gx + yzx + (p2)s. 2). (3.29)

We now majorize each term in (3.29) as follows. By (3.1) and the Agmon inequality, we
get

-1/2 1/2
(—24x, 2) =2/ g2z, dx < 2lglloolizllizell < CAZYT gl lzell® < CARYF Null sz
Q

< CTlz, (3.30)

Due to

—(yzx + (pD)x,2) = —/ yzzxdx+/ pzz, dx
Q

1/2

we can see that the above is also boundedChy,/1]|z([|%. Then we get, from (3.29),

(3.30) and the analogy, that

d 2 2 2 512
—(IIZII +llzel®) + 2v2l1? < CA TNz 12 t>20.

ChoosingNy large enough such thaﬁk;lfl v, we find that, forN > Np,

E(Ilzllz +llz:l1?) + vz 12 <0
Again, by

2 1
lzxll? = Fllzel® + 3ancallzl® = 21zl + N1z 11%)
we see, foralk > 0

d
E(IIZII2 + Iz 1®) + Fvllzll® + Iz« < O.
By the Gronwall lemma andgy € B;, we have, for alk > 0

2%+ Iz OI? < € 2" (201 + |2+ (0) )
< e (| Qnu(O) | + | Qnur (O)?) < Ere 2"
which concludes lemma 3.5. O

In the following, we shall show that, for every = 1,2,...,k + 2, the weak global
attractor 4; is actually the strong global attractor chW)(t) in Hper(Q) which will be
proved by an idea due to Ball [18].

Theorem 3.1.Assume that (2.4) holdy € Hr’,‘er(Q) for a fixedk > 0. Then for every
j=212,...,k+ 2, the weak global attractod; is actually the strong global attractor in
Hied ).

Proof. The proof of this theorem is similar to that in [11], so here we only sketch it.

Since a pointw belongs toA; if and only if there exist two sequenc¢®?}>° , C B;
and{t,,}°>°_;, t,, — oo, such thas"”) (1,,)w? converges tav weakly in ng,(Q), this theorem
will be proved if we are able to show that (some subsequence of) the seqsiéricg) w?
converges tav strongly in Hie(2).
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Taking the inner product of (2.1) witt—1)/-292"Y4 in H, we find that any solution
u of problem (2.1)—(2.3) satisfies
d , . . )
g (187 ull® + 19]l®) + 20 (10] ull® + 18]u)®) = K (@)
where

K@) = 2v||a;-1u||2+2/ 872 (uuy) - 9/ u dx — 2/ 3/72g - dJu dx.
Q Q

We observe thak (1) is weakly continuous irH,{er(Q). Then by proposition 2.1, using the
technique of [18] and proceeding as in [11], we can deduce that

lim sup (107 (SY ) wp) 17 + 0] (S ) wp) 12 < 1197w |1 + (197 w]|>. (3.31)

m—0o0
Since SY (1, )w® — w weakly in Hje(S2), by the Sobolev imbedding theorem, we see
SO (6w — w strongly in Hjer (2), up to a subsequence. Therefore, by (3.31), we get

limsup||SY (t,)wl 1%, < lwl?,;. (3.32)

m—> 00

On the other hand, by weak convergence, we have
liminf 1S9 (L) wp 15, = w5, (3:33)
m—00

(3.32) and (3.33) along with the weak convergence imply ﬂ’fé)t(tm)wg — w strongly

in ng,(sz). Hence, we get that; is the strong global attractor iHF{er(Q). The proof is
complete. O

We now show that all the global attractord; coincide. For that purpose, we
decompose the semigroufy”) () defined onHge(2) as SV (t) = Si”(t) + Sé’)(t) for
everyj =1,2,...,k+2. Forug € Hge(2), we define for all > 0,

S (uo=p) +y@) S5 (o = z(1) (3.34)

wherep(t) = Pyu(t) = PySY)(t)uo, y(¢) is the solution of problem (3.2)—(3.3) and) is
the solution of problem (3.27) and (3.28). Clearly, we have, for eyesyl, 2, ...,k + 2,

SD (@) = SV (1) + 85 (1) t>0. (3.35)

Our main result is as follows.
Theorem 3.2 Assume that (2.4) holdg, € ngr(sz) for a fixedk > 0. Then we have
A=Ay =+ = Ayo.

Proof. We only need to check, for every=1,2,...,k+1, A; = A;41.
Givenw € A;, we know that there exisb, € B; andz, — oo such that

SO (t)yw, — w in Hje (). (3.36)
By (3.35), we also have
SDtow, = SV G)w, + S5 (1) w. (3.37)

By (3.34) and (3.6) and lemma 3.4, we see
1S () wallgn < CA+ 2. (3.38)
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So there exist subsequenceswof andz, (still denoted byw, andt,) andv € ngtl(sz)
such that

SO (tyw, — v weakly in H/F1(Q). (3.39)

per

Also, we have
ol s < iminf 1S3 (twall < €A+ 257 (3.40)
Consider nowp € H. From (3.37), we have

SV twn. @) = (5 t)wa. ) + (S 1w, ).

Then, taking the limit as» — oo, by (3.36) and (3.39) and lemma 3.5, we get
(w, @) = (v, ¢) for every¢ € H, which impliesw = v in H. So we seeav € H,-)’;Fl(Q).

From (3.40), we also have, for all € A;,

lwll g < CA+AY2).

This meansA; is a bounded set irH,{Jrl(Q). Since A;, attracts every bounded set in

HJ&'(Q), we have
diStHj+1(A]', .Aj+1) = diStHj+1(S(j+1) (I)Aj, Af+1) -0 ast — oo

which implies A; C A;;1. Obviously, A;;1 C A;. Therefore, A; = A;;; for all
j=12,...,k+ 1. The proof is complete. O

In what follows, we show that regularity of the global attractor is useful when
we approach the solutions. In practical problems, we often need a finite-dimensional
approximation to the orbits in the global attractor. A simple way to do this is to approximate
the orbitu(z) in A; by its N-dimensional componeni(z) in the space spanned by the first
N eigenvectors ofA. In the following, we assume € H. SinceA; C By, it follows from
(2.6) and (3.1) that the err@r(t) = u(¢t) — p(¢) verifies

-1/2 -1/2 -1/2

lg@OI < AyLillgOlae < Ay llu@llg < E1dyly. (3.41)
On the other hand, by theorem 3.2 with= 0 we haveu(t) € A, C B,. So, it follows that
lgll < Atallg@ ez < A lu@llmz < E2A3h . (3.42)

Noting Ay11 — +00 asN — oo, we see that (3.42) provides a better approximation than
(3.41) whenh is large enough. In other words, if we want to get the same error, then the
dimensionN provided by (3.42) is smaller than that by (3.41).
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