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Abstract. This paper deals with the regularity of the global attractor for the
Benjamin–Bona–Mahony equation. We prove that the global attractor is smooth if the forc-
ing term is smooth.

1. Introduction

In this paper, we investigate the asymptotic behaviour of solutions to the
Benjamin–Bona–Mahony equation given by

ut − uxxt − νuxx + ux + uux = g(x) in �× R+ (1.1)

whereν > 0, g(x) ∈ L2(�), � ⊂ R is a bounded interval.
The Benjamin–Bona–Mahony equation incorporates nonlinear dispersive and dissipative

effects, and has been proposed as a model for propagation of long waves. The existence
and uniqueness of solutions for this equation have been investigated by many authors, such
as Bona and Dougalis [1], Bona and Smith [2], Showalter [3] and Amicket al [4]. In
the caseν = 0, this equation has been studied by Benjaminet al [5], Bona and Bryant
[6], Medeiros and Miranda [7], Medeiros and Menzala [8], Albert [9], Biler [10], and the
references therein. The finite-dimensional behaviour of the solutions has been discussed by
Wang and Yang [11], and Wang [12, 13]. In [11] and [12], the authors establish the existence
of the global attractor for this model inH 1(�) andH 2(�), respectively, which has finite
fractal dimension. In [13], the author proves the existence of the weak global attractorAj
in Hj(�) for every integerj > 2. Then a natural question arises whether these attractors
coincide. This question is concerned with the regularity of attractors. The study of regularity
of the global attractor is classical in the theory of dissipative dynamical systems, see [14]
for the general framework which applies to the strongly dissipative case. For the weakly
dissipative case such as the Benjamin–Bona–Mahony equation, the regularity of attractors
is not obvious since, in this case, the equation has no regularization effect on the solutions.
Recently, Goubet [15] apply a splitting method and successfully show the regularity of
attractors for the weakly damped Schrödinger equation. Splitting techniques are also used
to prove the regularity of attractors for weakly dissipative evolution equations by Moise and
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Rosa [16] and Goubet and Moise [17]. We here first construct a similar decomposition for
the Benjamin–Bona–Mahony equation, and then show thatAj (16 j 6 k + 2) obtained in
[13] is a subset ofHk+2(�) if the forcing termg ∈ Hk(�) with k > 0. This result implies
thatA1 = A2 = · · · = Ak+2.

The study of the asymptotic behaviour of solutions for nonlinear evolution equations is
an interesting question both in mathematics and physics. For some dissipative equations,
the long time behaviour of solutions is described by the existence of the global attractor
which is a compact invariant set and attracts all solutions. The global attractor is closely
related to the turbulence and chaos in physics. The complicated structure of the global
attractor is one important cause of the perceived chaos (see [14]). So, to better understand
the turbulence and chaos, it is necessary to investigate the existence and properties of
attractors. In this paper, for the Benjamin–Bona–Mahony equation, the regularity of the
global attractor is obtained. As a result of regularity, we will see that if the forcing term is
smooth, then the global attractor is also smooth, which means the global attractor consists
of smooth functions. In addition, this regularity also implies that the global attractor attracts
all solutions in a stronger sense if the initial data are more regular. In practical problems,
when we approach the orbits in the global attractor, the regularity will provide a higher
order of approximation (see section 3 later).

The outline of this paper is as follows. In the next section, we present some known
results for the Benjamin–Bona–Mahony equation which will be used in the following.
Section 3 is devoted to our main result. We first introduce a splitting of the solution
u = S(t)u0 of equation (1.1) into two partsS1(t)u0 andS2(t)u0. Next, we derivea priori
estimates and show thatS1(t)u0 is more regular thanS(t)u0. Then, we prove thatS2(t)u0

converges to zero whent goes to infinity. Finally, we present the proof of the main result.

2. Preliminaries

In this section, we describe the equation and recall some known results concerning the
existence and uniqueness of solutions. We also state the existence of weak attractors and
bounded absorbing sets for the equation.

We consider the following Benjamin–Bona–Mahony equation:

ut − uxxt − νuxx + ux + uux = g(x) (x, t) ∈ �× R+ (2.1)

with the initial condition

u(x, 0) = u0(x) x ∈ � (2.2)

and the periodic boundary condition

� = (0, L) and u is �-periodic (2.3)

whereν is a positive constant andg(x) is a given function.
In the following, we shall denoteH = L2

per(�), endowed with its usual inner product
(·, ·) and norm‖·‖, while ‖·‖p denotes the norm ofLpper(�) for all 16 p 6∞(‖·‖2 = ‖·‖).
In general,‖ · ‖X denotes the norm of any Banach spaceX.

Throughout this paper, we assumeg ∈ Hk
per(�) with k > 0. Then it follows from [13]

that, for every integerj with 1 6 j 6 k + 2, if u0 ∈ Hj
per(�), the problem (2.1)–(2.3)

possesses a unique solutionu(t) defined onR+ such that

u(t) ∈ C([0,∞),Hj
per(�))

∂u

∂t
∈ L∞(0, T ;Hj

per(�)) ∀T > 0.
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This result establishes the existence of a dynamical system{S(j)(t)}t>0 which mapsHj
per(�)

to H
j
per(�) such thatS(j)(t)u0 = u(t), the solution of problem (2.1)–(2.3). Clearly,

S(j)(t)|
H
j+1
per
= S(j+1)(t) for each j = 1, 2, . . . , k + 1. The weak continuity ofS(j)(t)

with respect to initial data is established in [11] and [12] for 16 j 6 k + 2. That is, we
have the following proposition.

Proposition 2.1. Assume thatg ∈ Hk
per(�) with k > 0. Then for eachj = 1, 2, . . . , k+2,

and t > 0, S(j)(t) : Hj
per(�)→ H

j
per(�) is weakly continuous.

In this paper, we also suppose the forcingg has zero mean, that is,∫
�

g(x) dx = 0. (2.4)

Then integrating (2.1) over� and applying (2.3) we find that the average ofu(t) is
conserved, i.e. for allt > 0

θ(u(t)) = 1

|�|
∫
�

u(x, t)dx = 1

|�|
∫
�

u0(x) dx = θ(u0). (2.5)

This shows that problem (2.1)–(2.3) has not bounded absorbing sets in whole spaceH . This
difficulty is overcome by introducing

Hα = {u ∈ H : |θ(u)| 6 α}.
(2.5) implies thatHα is invariant under the semigroupS(j)(t) associated to the system
(2.1)–(2.3).

We now recall the following existence result of bounded absorbing sets.

Theorem 2.1.Assume that (2.4) holds,g ∈ Hk
per(�) for a fixedk > 0, u0 ∈ Hj

per(�)
⋂
Hα,

j = 1, 2, . . . , k + 2. Then there exists a constantEj depending on the data (ν,�, g) andj
such that

‖u(t)‖Hj 6 Ej ∀t > tj
wheretj depends on the data (ν,�, g) andj andR when‖u0‖Hj 6 R.

For the proof of this theorem, we refer the reader to [13].
We note that theorem 2.1 shows that the ball

Bj = {u ∈ Hj
per(�) : ‖u‖Hj 6 Ej } (2.6)

is an absorbing set forS(j)(t) in Hj
per(�)

⋂
Hα. Let

Aj =
⋂
s>0

⋃
t>s
S(t)Bj 16 j 6 k + 2 (2.7)

where the closure is taken with respect to theHj -weak topology. Then from [13] we know
thatAj is the weak global attractor forS(j)(t). More precisely, we have the following.

Theorem 2.2. Assume that (2.4) holds,g ∈ Hk
per(�) for a fixed k > 0, then for

j = 1, 2, . . . , k + 2, the setAj satisfies:
(i) Aj is bounded and weakly closed inHj

per(�) ∩Hα;
(ii) S(j)(t)Aj = Aj , ∀t > 0;
(iii) for every bounded setB in Hj

per∩Hα, S(j)(t)B converges toAj with respect to the
Hj -weak topology ast →∞.
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We remark that the weak global attractorsA1 andA2 are also the strong global attractors
in H 1

per(�) andH 2
per(�), respectively, which is shown in [11] and [12]. Here the strong

global attractor means that the conclusion (iii) in theorem 2.2 holds with respect to the
strong topology.

By theorem 2.2, it is easy to see thatA1 ⊃ A2 ⊃ · · · ⊃ Ak+2. In this paper, we shall
show alsoA1 ⊂ A2 ⊂ · · · ⊂ Ak+2. So we will find thatA1 = A2 = · · · = Ak+2. For that
purpose, we must establish the regularity ofAj for j = 1, 2, . . . , k + 1, see theorem 3.2
below.

In the following, we will frequently use the Agmon inequality: foru ∈ H 1(�),

‖u‖∞ 6 C‖u‖1/2‖u‖1/2
H 1 6 C‖u‖H 1. (2.8)

Hereafter, we shall denote byC any positive constants which may change from line to line.

3. Regularity of the global attractor

In this section, we shall use a decomposition technique to derive the regularity of the weak
global attractorAj for S(j)(t), and show that all the attractorsAj coincide. By an idea of
Ball [18], we shall also prove that the weak global attractorAj is actually the strong global
attractor forS(j)(t) in Hj

per(�).
In what follows, we denote byA = −∂xx , the unbounded self-adjoint operator with

domainH 2
per(�). Then the operatorA1/2 is well defined. By spectral theory, we know that

there exists a complete orthonormal basis{wn}∞n=1 of H consisting of eigenvectors ofA,
that is,

Awn = λnwn 0= λ1 < λ2 6 · · · 6 λn→∞.
GivenN , we denote byP = PN the orthogonal projectors inH onto the space spanned
by the firstN eigenvectors ofA, w1, w2, . . . , wN , and we setQ = QN = I − PN . Since
‖A1/2u‖ = ‖ux‖, for u ∈ H 1

per(�), and

‖A1/2u‖ > λ1/2
N+1‖u‖ u ∈ QND(A

1/2)

we see that

‖u‖ 6 λ−1/2
N+1‖ux‖ u ∈ QND(A

1/2). (3.1)

Consider nowu0 ∈ H 1
per(�), u(t) = S(1)(t)u0, and setu(t) = p(t) + q(t), where

p(t) = PNu(t), q(t) = QNu(t). We split the high-frequency partq asq = y + z, wherey
is defined by

yt − yxxt − νyxx + yx +QN(yyx)+QN(py)x = QNg(x)−QN(ppx) (3.2)

y(0) = 0. (3.3)

The following lemma shows that problem (3.2)–(3.3) is well-posed.

Lemma 3.1.Assumeg ∈ H andu0 ∈ H 1
per(�). Then there exists a unique solutiony of

problem (3.2)–(3.3) such thaty ∈ C([0,∞),QNH
1
per(�)).

The proof of this lemma is similar to that in [7], and therefore is omitted here.
In the following, we derive estimates ony and show thaty(t) is more regular than

u(t). For that purpose, we will use the bounded absorbing setBj (1 6 j 6 k + 2) given
by (2.6). Without loss of generality, we can assume thatS(j)(t)Bj ⊂ Bj for every t > 0,
which means ifu0 ∈ Bj (16 j 6 k + 2), then for everyt > 0,

‖u(t)‖Hj 6 Ej . (3.4)
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By (3.4) and the Agmon inequality we see that, for everyt > 0,

‖u(t)‖∞ 6 C. (3.5)

Due top(t) = PNu(t), by (3.4) we have for everyt > 0,

‖p(t)‖Hj 6 Ej ‖p(t)‖∞ 6 C. (3.6)

We now derive the estimates ony in H 1
per(�).

Lemma 3.2.Assume that (2.4) holds,g ∈ H , u0 ∈ B1. Then there existsN0 depending on
E1 such that forN > N0,

‖y(t)‖H 1 6 C t > 0

whereC depends on the data (ν,�, g).

Proof. Taking the inner product of (3.2) withy in H , we find that

1

2

d

dt
(‖y‖2+ ‖yx‖2)+ ν‖yx‖2 = (Qg, y)− (Q(ppx + yyx + (py)x), y). (3.7)

By (3.1) we have

|(Qg, y)| = |(g, y)| 6 ‖g‖‖y‖ 6 λ−1/2
N+1‖g‖‖yx‖ 6 C + λ−1

N+1‖yx‖2. (3.8)

By (3.6) with j = 1, we get

|(−Q(ppx), y)| = |(ppx, y)| =
∣∣∣∣ ∫

�

ppxg dx

∣∣∣∣ 6 ‖p‖∞‖px‖‖y‖ 6 C‖y‖
6 C + ‖y‖2 6 C + λ−1

N+1‖yx‖ (3.9)

while

−(Q(yyx), y) = −(yyx, y) = −1

3

∫
�

(y3)x dx = 0. (3.10)

By (3.6) again, we have

−(Q(py)x, y) = (py, yx) 6 ‖p‖∞‖y‖‖yx‖ 6 Cλ−1/2
N+1‖yx‖2. (3.11)

Without loss of generality, we always assumeλN+1 > 1 in the following. So by (3.7)–(3.11)
we get

d

dt
(‖y‖2+ ‖yx‖2)+ 2ν‖yx‖2 6 C + C1λ

−1/2
N+1‖yx‖2. (3.12)

ChoosingN0 large enough such thatC1λ
−1/2
N0+1 6 ν. Then forN > N0, we find that

d

dt
(‖y‖2+ ‖yx‖2)+ ν‖yx‖2 6 C. (3.13)

By (3.1), we note that

‖yx‖2 > 1
2‖yx‖2+ 1

2λN+1‖y‖2 > 1
2(‖y‖2+ ‖yx‖2)

and therefore, we find, for everyt > 0,

d

dt
(‖y‖2+ ‖yx‖2)+ 1

2
ν(‖y‖2+ ‖yx‖2) 6 C.

It follows from the Gronwall lemma that, for everyt > 0,

‖y(t)‖2+ ‖yx(t)‖2 6 e−
1
2νt (‖y(0)‖2+ ‖yx(0)‖2)+ 2C

ν
= 2C

ν

which concludes lemma 3.2. �
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By lemma 3.2 and the Agmon inequality, we get, for allt > 0,

‖y(t)‖∞ 6 C. (3.14)

Lemma 3.3.Assume that (2.4) holds,g ∈ H , u0 ∈ B1. Then, forN > N0, we have

‖y(t)‖H 2 6 C t > 0

whereN0 is the constant in lemma 3.2,C depends on the data (ν,�, g).

Proof. Taking the inner product of (3.2) with−yxx in H , we find

1

2

d

dt
(‖yx‖2+ ‖yxx‖2)+ ν‖yxx‖2 = (g − ppx − yyx − (py)x,−yxx). (3.15)

Note that

|(g,−yxx)| 6 ‖g‖‖yxx‖ 6 C + 1
8ν‖yxx‖2. (3.16)

By (3.6) we have

|(ppx, yxx)| 6 ‖p‖∞‖px‖‖yxx‖ 6 C‖yxx‖ 6 C + 1
8ν‖yxx‖2. (3.17)

By (3.14) and lemma 3.2, we get

|(yyx, yxx)| 6 ‖y‖∞‖yx‖‖yxx‖ 6 C‖yxx‖ 6 C + 1
8ν‖yxx‖2. (3.18)

Similarly, we also have

|(py)x, yxx)| 6 C + 1
8ν‖yxx‖2. (3.19)

By (3.15)–(3.19), we get, for allt > 0,

d

dt
(‖yx‖2+ ‖yxx‖2)+ ν‖yxx‖2 6 C.

Since

‖yxx‖2 > 1
2‖yxx‖2+ 1

2λN+1‖yx‖2 > 1
2(‖yxx‖2+ ‖yx‖2)

we find, for all t > 0,
d

dt
(‖yx‖2+ ‖yxx‖2)+ 1

2ν(‖yx‖2+ ‖yxx‖2) 6 C

and then the Gronwall lemma gives lemma 3.3. �

Lemma 3.4.Assume that (2.4) holds,g ∈ Hk
per(�) for a fixedk > 0,u0 ∈ Bj (16 j 6 k+1).

Then there exists a constantCj depending on the data (ν,�, g) and j such that when
N > N0,

‖y(t)‖Hj+1 6 Cj t > 0

whereN0 is the constant in lemma 3.2.

Proof. We check this lemma by an induction argument onj .
(i) Initialization of the induction(j = 1). If j = 1, lemma 3.4 reduces to lemma 3.3.

Therefore, in this case, the lemma is true.
(ii) The induction argument. We assume that lemma 3.4 holds up to orderj − 1; we

want to show it is also valid at orderj (j > 2).
Taking the inner product of (3.2) with(−1)j ∂2j

x y in H , we see

1

2

d

dt
(‖∂jx y‖2+ ‖∂j+1

x y‖2)+ ν‖∂j+1
x y‖2 = (−1)j (g − ppx − yyx − (py)x, ∂2j

x y). (3.20)
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By the induction assumption, we know

‖y(t)‖Hj 6 Cj t > 0. (3.21)

So by the Agmon inequality, we have, for each 06 l 6 j − 1,

‖∂lxy(t)‖∞ 6 Cj t > 0. (3.22)

Note that

|(−1)j (g, ∂2j
x y)| 6 ‖g‖Hj−1‖∂j+1

x y‖ 6 ‖g‖Hk‖∂j+1
x y‖ 6 C + 1

8ν‖∂j+1
x ‖2. (3.23)

We also have

|(−1)j (−ppx, ∂2j
x y)| =

∣∣∣∣ ∫
�

∂j−1
x (ppx)∂

j+1
x y dx

∣∣∣∣
6
∣∣∣∣ ∫

�

∑
αj (∂xp)

a1 . . . (∂j−1
x p)aj−1∂k+2

x y dx

∣∣∣∣
+
∣∣∣∣ ∫

�

p∂jx p∂
j+1
x y dx

∣∣∣∣ 6∑αj‖∂xp‖a1∞ . . . ‖∂j−1
x p‖aj−1∞

∫
�

|∂j+1
x y| dx

+‖p‖∞‖∂jx p‖‖∂j+1
x y‖ 6

∑
αj |�|1/2‖p‖a1

H 2 . . . ‖p‖aj−1

Hj ‖∂j+1
x y‖

+‖p‖H 1‖p‖Hj ‖∂j+1
x y‖ 6 C‖∂j+1

x y‖ (by (3.6))

6 C + 1

8
ν‖∂j+1

x y‖2. (3.24)

Similarly, using (3.21) and (3.22) instead of (3.6), we can deduce that the last two terms
on the right-hand side of (3.20) are also bounded byC + 1

8ν‖∂j+1
x y‖2, so by (3.20), (3.23),

(3.24) and the analogy, we find

d

dt
(‖∂jx y‖2+ ‖∂j+1

x y‖2)+ ν‖∂j+1
x y‖2 6 C.

Thanks to

‖∂j+1
x y‖2 > 1

2‖∂j+1
x y‖2+ 1

2λN+1‖∂jx y‖2 > 1
2(‖∂j+1

x y‖2+ ‖∂jx y‖2)

we get, for allt > 0,

d

dt
(‖∂jx y‖2+ ‖∂j+1

x y‖2)+ 1

2
ν(‖∂jx y‖2+ ‖∂j+1

x y‖2) 6 C

and then the Gronwall lemma concludes lemma 3.4. �
Projecting equation (2.1) ontoQNH , we find thatq = QNu satisfies

qt − qxxt − νqxx + qx +QN(p + q)(p + q)x = QNg (3.25)

q(0) = QNu0. (3.26)

Then from (3.25) and (3.2), it follows thatz = q − y satisfies

zt − zxxt − νzxx + zx = −QN(zqx + yzx + (pz)x) (3.27)

z(0) = QNu0. (3.28)

In the following, we shall showz converges to zero ast goes to infinity. More precisely,
we have the following.

Lemma 3.5.Assume that (2.4) holds,g ∈ H , u0 ∈ B1. Then there existsN0 depending on
the data (ν,�, g) andE1 such that, forN > N0,

‖z(t)‖2
H 1 6 E1 e−

1
2νt t > 0
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whereE1 is the constant in (2.6) withj = 1.

Proof. Taking the inner product of (3.27) withz in H , we find

1

2

d

dt
(‖z‖2+ ‖zx‖2)+ ν‖zx‖2 = −(zqx + yzx + (pz)x, z). (3.29)

We now majorize each term in (3.29) as follows. By (3.1) and the Agmon inequality, we
get

(−zqx, z) = 2
∫
�

qzzx dx 6 2‖q‖∞‖z‖‖zx‖ 6 Cλ−1/2
N+1‖q‖H 1‖zx‖2 6 Cλ−1/2

N+1‖u‖H 1‖zx‖2

6 Cλ−1/2
N+1‖zx‖2. (3.30)

Due to

−(yzx + (pz)x, z) = −
∫
�

yzzx dx +
∫
�

pzzx dx

we can see that the above is also bounded byCλ
−1/2
N+1‖zx‖2. Then we get, from (3.29),

(3.30) and the analogy, that

d

dt
(‖z‖2+ ‖zx‖2)+ 2ν‖zx‖2 6 Cλ−1/2

N+1‖zx‖2 t > 0.

ChoosingN0 large enough such thatCλ−1/2
N0+1 6 ν, we find that, forN > N0,

d

dt
(‖z‖2+ ‖zx‖2)+ ν‖zx‖2 6 0.

Again, by

‖zx‖2 > 1
2‖zx‖2+ 1

2λN+1‖z‖2 > 1
2(‖z‖2+ ‖zx‖2)

we see, for allt > 0,

d

dt
(‖z‖2+ ‖zx‖2)+ 1

2ν(‖z‖2+ ‖zx‖2) 6 0.

By the Gronwall lemma andu0 ∈ B1, we have, for allt > 0,

‖z(t)‖2+ ‖zx(t)‖2 6 e−
1
2νt (‖z(0)‖2+ ‖zx(0)‖2)

6 e−
1
2νt (‖QNu(0)‖2+ ‖QNux(0)‖2) 6 E1 e−

1
2νt

which concludes lemma 3.5. �
In the following, we shall show that, for everyj = 1, 2, . . . , k + 2, the weak global

attractorAj is actually the strong global attractor forS(j)(t) in H
j
per(�), which will be

proved by an idea due to Ball [18].

Theorem 3.1.Assume that (2.4) holds,g ∈ Hk
per(�) for a fixed k > 0. Then for every

j = 1, 2, . . . , k + 2, the weak global attractorAj is actually the strong global attractor in
H
j
per(�).

Proof. The proof of this theorem is similar to that in [11], so here we only sketch it.
Since a pointw belongs toAj if and only if there exist two sequences{w0

m}∞m=1 ⊂ Bj
and{tm}∞m=1, tm→∞, such thatS(j)(tm)w0

m converges tow weakly inHj
per(�), this theorem

will be proved if we are able to show that (some subsequence of) the sequenceS(j)(tm)w
0
m

converges tow strongly inHj
per(�).
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Taking the inner product of (2.1) with(−1)j−1∂
2(j−1)
x u in H , we find that any solution

u of problem (2.1)–(2.3) satisfies

d

dt
(‖∂j−1

x u‖2+ ‖∂jx u‖2)+ 2ν(‖∂j−1
x u‖2+ ‖∂jx u‖2) = K(u)

where

K(u) = 2ν‖∂j−1
x u‖2+ 2

∫
�

∂j−2
x (uux) · ∂jx u dx − 2

∫
�

∂j−2
x g · ∂jx u dx.

We observe thatK(u) is weakly continuous inHj
per(�). Then by proposition 2.1, using the

technique of [18] and proceeding as in [11], we can deduce that

lim sup
m→∞

(‖∂j−1
x (S(j)(tm)w

0
m)‖2+ ‖∂jx (S(j)(tm)w0

m)‖2 6 ‖∂j−1
x w‖2+ ‖∂jxw‖2. (3.31)

SinceS(j)(tm)w0
m → w weakly in Hj

per(�), by the Sobolev imbedding theorem, we see
S(j)(tm)w

0
m→ w strongly inHj−1

per (�), up to a subsequence. Therefore, by (3.31), we get

lim sup
m→∞

‖S(j)(tm)w0
m‖2

Hj 6 ‖w‖2
Hj . (3.32)

On the other hand, by weak convergence, we have

lim inf
m→∞ ‖S

(j)(tm)w
0
m‖2

Hj > ‖w‖2
Hj . (3.33)

(3.32) and (3.33) along with the weak convergence imply thatS(j)(tm)w
0
m → w strongly

in Hj
per(�). Hence, we get thatAj is the strong global attractor inHj

per(�). The proof is
complete. �

We now show that all the global attractorsAj coincide. For that purpose, we
decompose the semigroupS(j)(t) defined onHj

per(�) as S(j)(t) = S
(j)

1 (t) + S(j)2 (t) for
everyj = 1, 2, . . . , k + 2. Foru0 ∈ Hj

per(�), we define for allt > 0,

S
(j)

1 (t)u0 = p(t)+ y(t) S
(j)

2 (t)u0 = z(t) (3.34)

wherep(t) = PNu(t) = PNS(j)(t)u0, y(t) is the solution of problem (3.2)–(3.3) andz(t) is
the solution of problem (3.27) and (3.28). Clearly, we have, for everyj = 1, 2, . . . , k + 2,

S(j)(t) = S(j)1 (t)+ S(j)2 (t) t > 0. (3.35)

Our main result is as follows.

Theorem 3.2.Assume that (2.4) holds,g ∈ Hk
per(�) for a fixedk > 0. Then we have

A1 = A2 = · · · = Ak+2.

Proof. We only need to check, for everyj = 1, 2, . . . , k + 1, Aj = Aj+1.
Givenw ∈ Aj , we know that there existwn ∈ Bj and tn→∞ such that

S(j)(tn)wn→ w in Hj
per(�). (3.36)

By (3.35), we also have

S(j)(tn)wn = S(j)1 (tn)wn + S(j)2 (tn)wn. (3.37)

By (3.34) and (3.6) and lemma 3.4, we see

‖S(j)1 (tn)wn‖Hj+1 6 C(1+ λ1/2
N ). (3.38)
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So there exist subsequences ofwn and tn (still denoted bywn and tn) and v ∈ Hj+1
per (�)

such that

S
(j)

1 (tn)wn→ v weakly inHj+1
per (�). (3.39)

Also, we have

‖v‖Hj+1 6 lim inf
n→∞ ‖S

(j)

1 (tn)wn‖Hj+1 6 C(1+ λ1/2
N ). (3.40)

Consider nowφ ∈ H . From (3.37), we have

(S(j)(tn)wn, φ) = (S(j)1 (tn)wn, φ)+ (S(j)2 (tn)wn, φ).

Then, taking the limit asn → ∞, by (3.36) and (3.39) and lemma 3.5, we get
(w, φ) = (v, φ) for everyφ ∈ H , which impliesw = v in H . So we seew ∈ Hj+1

per (�).
From (3.40), we also have, for allw ∈ Aj ,

‖w‖Hj+1 6 C(1+ λ1/2
N ).

This meansAj is a bounded set inHj+1
per (�). SinceAj+1 attracts every bounded set in

H
j+1
per (�), we have

distHj+1(Aj ,Aj+1) = distHj+1(S(j+1)(t)Aj ,Aj+1)→ 0 ast →∞
which impliesAj ⊂ Aj+1. Obviously, Aj+1 ⊂ Aj . Therefore,Aj = Aj+1 for all
j = 1, 2, . . . , k + 1. The proof is complete. �

In what follows, we show that regularity of the global attractor is useful when
we approach the solutions. In practical problems, we often need a finite-dimensional
approximation to the orbits in the global attractor. A simple way to do this is to approximate
the orbitu(t) in A1 by itsN -dimensional componentp(t) in the space spanned by the first
N eigenvectors ofA. In the following, we assumeg ∈ H . SinceA1 ⊂ B1, it follows from
(2.6) and (3.1) that the errorq(t) = u(t)− p(t) verifies

‖q(t)‖ 6 λ−1/2
N+1‖q(t)‖H 1 6 λ−1/2

N+1‖u(t)‖H 1 6 E1λ
−1/2
N+1 . (3.41)

On the other hand, by theorem 3.2 withk = 0 we haveu(t) ∈ A2 ⊂ B2. So, it follows that

‖q(t)‖ 6 λ−1
N+1‖q(t)‖H 2 6 λ−1

N+1‖u(t)‖H 2 6 E2λ
−1
N+1. (3.42)

Noting λN+1→ +∞ asN →∞, we see that (3.42) provides a better approximation than
(3.41) whenN is large enough. In other words, if we want to get the same error, then the
dimensionN provided by (3.42) is smaller than that by (3.41).
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